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Abstract—Hyperspectral endmember extraction is a process to
estimate endmember signatures from the hyperspectral observa-
tions, in an attempt to study the underlying mineral composition
of a landscape. However, estimating the number of endmembers,
which is usually assumed to be known a priori in most endmember
estimation algorithms (EEAs), still remains a challenging task. In
this paper, assuming hyperspectral linear mixing model, we pro-
pose a hyperspectral data geometry-based approach for estimating
the number of endmembers by utilizing successive endmember
estimation strategy of an EEA. The approach is fulfilled by two
novel algorithms, namely geometry-based estimation of number
of endmembers—convex hull (GENE-CH) algorithm and affine
hull (GENE-AH) algorithm. The GENE-CH and GENE-AH algo-
rithms are based on the fact that all the observed pixel vectors
lie in the convex hull and affine hull of the endmember signatures,
respectively. The proposed GENE algorithms estimate the number
of endmembers by using the Neyman–Pearson hypothesis testing
over the endmember estimates provided by a successive EEA until
the estimate of the number of endmembers is obtained. Since the
estimation accuracies of the proposed GENE algorithms depend
on the performance of the EEA used, a reliable, reproducible,
and successive EEA, called p-norm-based pure pixel identifica-
tion (TRI-P) algorithm is then proposed. The performance of
the proposed TRI-P algorithm, and the estimation accuracies of
the GENE algorithms are demonstrated through Monte Carlo
simulations. Finally, the proposed GENE and TRI-P algorithms
are applied to real AVIRIS hyperspectral data obtained over the
Cuprite mining site, Nevada, and some conclusions and future
directions are provided.

Index Terms—Endmember identifiability, estimation of num-
ber of endmembers, hyperspectral imaging, hyperspectral un-
mixing (HU), pure pixel, reproducibility, successive endmember
extraction.
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I. INTRODUCTION

HYPERSPECTRAL remote sensing is a powerful tech-
nique to study and analyze an object of interest, through

a set of images that are obtained over hundreds of narrowly
spaced spectral bands. The object of interest could be geo-
graphical areas of the Earth [1], extra terrestrial objects [2],
counterfeited tablets [3], and many others. In this paper, we
consider the hyperspectral images that are taken with a pur-
pose of material identification and quantification in a given
geographical location. Herein, the electromagnetic scattering
patterns are recorded over hundreds of continuous spectral
bands from a range of visible to near-infrared wavelength,
thereby yielding a data cube containing spatial and spectral
information of the substances within the area of interest. In
analyzing the obtained data cube, hyperspectral unmixing (HU)
[1] that decomposes the data cube into endmember signatures
(which correspond to the reflection coefficients of the materials
present in the scene) and their corresponding abundance maps
(which correspond to the proportional distribution of those
endmembers present in the scene), plays a prominent role, and
many new HU algorithms [4], [5] are being introduced for this
purpose. HU primarily involves three processing procedures,
namely dimension reduction, endmember extraction, and abun-
dance estimation [1]. The HU results can only be completely
interpretable, when the number of substances (or endmembers)
present in that area is given a priori, which however is unknown
in practice.

Although a number of early efforts have been made in
developing algorithms to estimate the number of endmembers
(also known as rank estimation [6], [7] or model order selection
[8], [9]), the problem of estimating the number of endmembers
remains one of the greatest challenges. The vast majority of the
existing methods for estimating the number of endmembers can
be classified into two categories: information theoretic criteria-
based methods and eigenvalue thresholding methods. Methods
falling into the group of information theoretic criteria includes
Akaike’s information criterion (AIC) [10], minimum descrip-
tion length (MDL) [11], and Bayesian information criterion
(BIC) [12], [13], to name a few. These criteria generally consist
of two additive terms: a negative data log-likelihood term
and a penalty term. As the number of endmembers increases,
the value of the negative data log-likelihood term decreases,
whereas the value of the penalty term increases. The best
estimate of the number of endmembers is the one that yields
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the minimum value of the criteria. In AIC, MDL and BIC,
the data log-likelihoods in the criteria are identical, but how
each method penalizes the overestimation of the number of
endmembers makes the difference. Since the criteria require the
prior knowledge of the mixture model or likelihood function,
the estimation results may suffer from model mismatch errors
resulting from incorrect prior information. It has been shown
in [14] that the results of AIC and MDL when applied to
hyperspectral data are seriously overestimated due to the invalid
Gaussian distribution assumption made on the abundances [15].

Methods belonging to the group of eigenvalue thresholding
(either explicitly or implicitly) include principal component
analysis (PCA)-based approaches [16], Neyman–Pearson de-
tection theory-based method [17] (also referred to as virtual di-
mensionality (VD) in [14]), and hyperspectral signal subspace
identification by minimum error (Hysime) [18], to name a few.
PCA-based approaches aim to determine the cutoff threshold
between the eigenvalues caused by signals and noise, but the
variation between the two adjacent eigenvalues may not be
significant in a practical scenario (more discussions about the
threshold selection for PCA can be found in [19]), thereby
easily leading to estimation errors in number of endmembers
estimation, as demonstrated in [18]. The Neyman–Pearson
detection theory-based method was first proposed by Harsanyi,
Farrand, and Chang (HFC) in 1993, and is termed as HFC
method [17]. The HFC method uses Neyman–Pearson detector
for a binary hypothesis testing problem, built on the differences
in eigenvalues of the sample correlation and sample covariance
matrices. The HFC method was later revisited by incorporating
the concepts of VD and noise-prewhitening step [14]. An alter-
native to VD, namely second moment linear dimensionality has
been recently reported in [20]. Hysime [18] utilizes a minimum
mean square error criterion to estimate the signal subspace in
hyperspectral images. It starts with estimating the signal and
the noise correlation matrices, and then selects the subset of
eigenvectors that best represent the signal subspace in the least
squared error sense. In addition to the two aforementioned
categories, two other methods are worth mentioning. A Markov
chain Monte Carlo (MCMC)-based approach was proposed
in [21] to estimate the number of endmembers. While the
applicability of the algorithm is restricted to the data with a
smaller number of endmembers/pixels due to high computa-
tional demand, it provides Bayesian estimation of the number
of endmembers, with theoretical basis. An extension of the
unmixing algorithm namely, iterated constrained endmember
(ICE) [22] has been reported in [23], where iterative endmem-
ber pruning through sparsity-promoting priors has been used
to simultaneously estimate the number of endmembers and to
unmix the hyperspectral data.

In this paper, we consider the linear mixing model (which
is the most prominent model in HU [1]) and propose two hy-
perspectral data geometry-based algorithms for estimating the
number of endmembers, namely geometry-based estimation of
number of endmembers—convex hull (GENE-CH) algorithm
and affine hull (GENE-AH) algorithm. The proposed GENE
algorithms (GENE-CH and GENE-AH) exploit successive es-
timation property of a pure-pixel-based endmember extraction
algorithm (EEA), and aim to decide when the EEA should stop

estimating the next endmember signature. The GENE-CH and
GENE-AH algorithms are devised based on the data geometry
fact that all the observed pixel vectors should lie in the convex
hull (CH) and affine hull (AH) of the endmember signatures,
respectively. Since the EEAs identify endmember estimates
from the set of observed pixel vectors, the fact pertaining to the
data geometry also implies that the current endmember estimate
should lie in the CH/AH of the previously found endmembers
when the current endmember estimate is obtained for an overly
estimated number of endmembers. In the noisy scenario, the
decision of whether the current endmember estimate is in the
CH/AH of the previously found endmembers can be formulated
as a binary hypothesis testing problem, which we solve by
Neyman–Pearson detection theory. The performances of the
proposed GENE algorithms depend on the accuracy of pure
pixel indices identification of an EEA. Existing EEAs include
pure pixel search algorithms [24], [25], algorithms based on
Winter’s belief [26]–[31], and spatial-information-based algo-
rithms [32], [33], to name a few. However, EEAs that can be
used in conjunction with the GENE algorithms are preferred to
have the following properties for better estimation accuracy and
efficiency.

• Reliability—The EEA can reliably find a set of true
endmembers provided that pure pixels exist in the hy-
perspectral data. Specifically, for the noiseless case, its
endmember identifiability can be guaranteed.

• Reproducibility—The EEA provides reproducible end-
member estimates for a given hyperspectral data set with-
out need of any random initialization.

• Successive estimation—The EEA estimates the endmem-
bers successively.

• Computational efficiency—The EEA has low computa-
tional complexity (as the overall complexity of the GENE
algorithms also depends on the complexity of the EEA
employed).

Therefore, we herein propose a reliable, reproducible, and
computationally efficient, successive EEA, called p-norm-
based pure pixel identification (TRI-P, abbreviated for Triple-P)
algorithm. The TRI-P algorithm basically consists of two pro-
cesses: First, the data are projected onto a subspace orthogonal
to already found endmember signatures (affine transformation),
and secondly, maximum p-norm of the observed pixel vectors
is used to identify a new pure pixel (1-D pixel search). The
notion of orthogonal subspace projection has been used in
EEAs such as VCA [25], automatic target generation process
(ATGP) [34], and successive volume maximization (SVMAX)
[31], to avoid repeated identification of an endmember. While
ATGP and SVMAX were developed from target detection and
Winter’s volume maximization framework, respectively, they
incidentally turn out to be special cases of the pure pixel search-
based TRI-P algorithm, for p = 2. As will be seen in Section V,
TRI-P algorithm shows improved performance over all the
benchmark EEAs under test. Some Monte Carlo simulations
and experiments with AVIRIS Cuprite data are also presented
to demonstrate the merits of the proposed GENE and TRI-P
algorithms over some existing benchmark methods.
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We should also mention that very recent developments by
Chang et al. [35], [36] have explored the feasibility of using
EEAs to determine the number of endmembers. In [35], two
stopping criteria using gradient/difference of the projection
error power, and in [36], a Neyman–Pearson detector based on
the probability density function (pdf) of the maximum projec-
tion error power have been reported. In short, these methods
[35], [36] estimate the number of endmembers by implicitly
examining if the current endmember estimate is in the range
space of the previously found endmembers or not, whereas
the proposed GENE algorithms make good use of CH/AH
geometry of the hyperspectral data to estimate the number of
endmembers, with appealing estimation accuracies.

The following is the organization of this paper. Section II
presents the linear mixing model and some general assump-
tions. The dimension reduction technique, namely affine set
fitting is also discussed, following which the convex geometry
of the dimension-reduced hyperspectral data is presented in that
section. The proposed GENE-CH and GENE-AH algorithms
for estimating the number of endmembers in a hyperspectral
data cube are presented in Section III. Section IV presents
the TRI-P algorithm. In Sections V and VI, the efficacy of
the proposed methods is demonstrated through Monte Carlo
simulations for various scenarios and by real data experiments,
respectively. Finally, some concluding remarks and future di-
rections are given in Section VII.

The notations used in this paper are briefed as follows:
R

M and R
M×N represent the set of real M × 1 vectors and

M ×N matrices, respectively, 1N represents the N × 1 all-
one vector, 0 represents an all-zero vector of proper dimension,
and IN is the N ×N identity matrix. ‖x‖p represents the
p-norm of a vector x. A Gaussian distribution with mean vector
μ and covariance matrix Σ is denoted as N (μ,Σ)}. a � b
means that every component in a is larger than or equal to
the corresponding component in b. range[A] denotes the range
space of the matrix A, and diag(λ1, . . . , λM ) denotes a RM×M

diagonal matrix whose diagonal elements are λ1, . . . , λM . P (·)
denotes the probability function.

II. SIGNAL MODEL AND DATA PRE PROCESSING

A. Linear Mixing Model

The linear mixing model is commonly used in analyzing
hyperspectral images [1], wherein the observed images are
assumed to have undergone a single reflection, and is devoid
of any interference due to scattering. In this paper, we consider
the linear mixing model, which can also be viewed as a special
case of the nonlinear mixing models proposed in [37] and [38].
Specifically, we consider the scenario in which a hyperspectral
sensor with M spectral bands measures solar electromagnetic
radiations reflecting from N distinct substances, over a scene
of interest. Owing to low spatial resolution, each pixel vector of
the measured hyperspectral image cube can be described by an
M ×N linear mixing model [1], [25], [26], [39], [40]

x[n]=As[n]+w[n]=
N∑
i=1

si[n]ai+w[n], ∀n=1, . . . , L (1)

where M is the number of spectral bands and N is
the number of endmembers present in the scene. Further,
x[n] = [x1[n], . . . , xM [n]]T is the nth pixel vector in the hyper-
spectral observation, A = [a1, . . . ,aN ] ∈ R

M×N denotes the
endmember signature matrix whose ith column vector ai is
the ith endmember signature (or simply endmember), s[n] =
[s1[n], . . . , sN [n]]T ∈ R

N is the nth abundance vector com-
prising N fractional abundances and L is the total number of
observed pixel vectors. Since noise is inevitable in hyperspec-
tral images, w[n] = [w1[n], . . . , wM [n]]T represents the zero-
mean, uniform/non-uniform additive Gaussian noise vector
with the distribution N (0,D), where D = diag(σ2

1 , . . . , σ
2
M )

in which σ2
i > 0 denotes the noise variance in the ith spectral

band. If σ2
i = σ2

j , ∀i �= j, then it is called uniform Gaussian
noise, else it is called non-uniform Gaussian noise.

The following are the general assumptions [31], [40] associ-
ated with (1):
(A1) (Non-negativity condition) si[n] ≥ 0∀i, n.
(A2) (Full additivity condition)

∑N
i=1 si[n] = 1∀n.

(A3) min{L,M} ≥ N and A is of full column rank.
(A4) (Pure pixel assumption) There exists at least an index

set {l1, . . . , lN} such that x[li] = ai +w[li], for i =
1, . . . , N .

Assumptions (A1)–(A3) are generally true in hyperspectral
images [31], [39]. Assumption (A4) implies that there exists at
least one (location unknown) pixel index for each endmember
such that the associated observed pixel vector will be fully
contributed by that single endmember, and it usually holds
true for hyperspectral images taken with a reasonable spatial
resolution [41].

B. Dimension Reduction by Weighted Affine Set Fitting

As in conventional hyperspectral image analysis [1], we
begin with dimension reduction of the observed pixel data
with the dual aim of reducing the complexity of the ensuing
unmixing process and reducing the impact of noise in the
hyperspectral data to an extent. For a linear mixing model,
it has been discussed in [42] that the true information about
the mixing process is fully available in a lower dimensional
subspace of dimension N − 1, which is usually much smaller
than M . It has also been proved in noiseless case that the
dimension reduction can be performed due to the following
fact [43]:

x[n] ∈ aff{a1, . . . ,aN} = aff {x[1], . . . ,x[L]} , ∀n (2)

where aff{a1, . . . ,aN} is the affine hull of {a1, . . . ,aN} ⊂
R

M and is defined as [44]

aff{a1, . . . ,aN} =

{
x =

N∑
i=1

θiai

∣∣∣∣1T
Nθ = 1,θ ∈ R

N

}
(3)

in which θ = [θ1, . . . , θN ]T . Moreover, due to (A3), the end-
member affine hull aff{a1, . . . ,aN} can be represented as [43]:

aff{a1, . . . ,aN}=A(C,d)
Δ
= {x=Cα+d|α∈R

N−1} (4)

for some (non-unique) affine set parameter (C,d) ∈
R

M×(N−1) × R
M , where N − 1 is the affine dimension
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of aff{a1, . . . ,aN}. An optimal solution for (C,d) has been
provided in [43], where

d =
1

L

L∑
n=1

x[n], (5)

C =
[
q1

(
UxU

T
x

)
, . . . , qN−1

(
UxU

T
x

)]
(6)

in which

Ux = [x[1]− d, . . . ,x[L]− d] ∈ R
M×L (7)

is the mean removed data matrix and qi(R) denotes the unit-
norm eigenvector associated with the ith principal eigenvalue
of the matrix R.

However, in practice, the number of endmembers N is
unknown and ought to be estimated. Therefore, by assuming
Nmax to be a maximum bound on the number of endmembers,
where N ≤ Nmax ≤ M , similar to the one in [43], we can
obtain an affine set fitting parameter (C,d) ∈ R

M×(Nmax−1) ×
R

M , as below:

C =
[
q1

(
UxU

T
x

)
, . . . , qNmax−1

(
UxU

T
x

)]
(8)

and d is defined in (5). From (6) and (8), it can be easily
verified that

x[n] ∈ A(C,d) ⊆ A(C,d). (9)

Then, by virtue of (4), and since C given by (8) is semi-unitary,
the dimension-reduced pixel vectors x̃[n] can be obtained by
the following affine transformation of x[n]

x̃[n] = CT (x[n]− d) ∈ R
Nmax−1. (10)

The dimension reduction using affine set fitting can also be
viewed as that using PCA [16], though the former is the
outcome of convex geometry, and the later is an approach based
on second-order statistics of the data.

For the noisy scenario, as given in [39], the approximate
affine set fitting parameter (Ĉ, d̂) can be obtained as

d̂ =
1

L

L∑
n=1

x[n] =
1

L

L∑
n=1

As[n] +
1

L

L∑
n=1

w[n] ∼= d (11)

Ĉ =
[
q1

(
UxU

T
x − LD̂

)
, . . . , qNmax−1

(
UxU

T
x − LD̂

)]
∼=C (12)

where D̂ is an estimate of the noise covariance matrix D. As
shown in [39], for given D̂, the affine set fitting solution (Ĉ, d̂)
[given by (11) and (12)] can be shown to be an approximation to
the true (C,d) and it asymptotically approaches the true (C,d)
for large L. In practical situations, the multiple-regression-
analysis-based noise covariance estimation method reported in
HySiMe [18] can be used to estimate D.

Further, in the noisy scenario, by substituting (11) and (12)
in (1) for d and C, and due to (1) and (A2), we have

x̃[n] =

N∑
i=1

si[n]αi + w̃[n], n = 1, . . . , L (13)

where

αi = ĈT
(ai − d̂) ∈ R

Nmax−1, i = 1, . . . , N (14)

is the ith dimension-reduced endmember, and w̃[n]
Δ
=

ĈT
w[n] ∼ N (0,Σ), in which

Σ = ĈT
DĈ ∈ R

(Nmax−1)×(Nmax−1). (15)

The relation between the dimension-reduced endmember αi

and the true endmember ai is given by

ai = Ĉαi + d̂, i = 1, . . . , N. (16)

It is worth mentioning that from (13) and under (A4), we have

x̃[li] = αi + w̃[li], ∀i = 1, . . . , N (17)

which is essential in the development of the proposed GENE
algorithms in Section III.

C. Convex Geometry of the Hyperspectral Data

In this subsection we will present the convex geometry of the
noise-free dimension-reduced hyperspectral data given by (13)
for which w̃[n] = 0, ∀n. The convex geometry will lay a solid
platform for the ensuing sections, though the presence of noise
will be taken into account therein. Before proceeding further,
let us introduce an important concept in convex analysis. The
convex hull of a set of vectors {α1, . . . ,αN} ⊂ R

Nmax−1 is
defined as

conv{α1, . . . ,αN}=
{
x=

N∑
i=1

θiαi

∣∣∣∣1T
Nθ=1,θ�0

}
(18)

where θ=[θ1, . . . , θN ]T . A convex hull, conv{α1, . . . ,αN} is
called an N−1 dimensional simplex in R

Nmax−1 if {α1, . . . ,
αN}⊂R

Nmax−1 is affinely independent, and the simplex
conv{α1, . . . ,αN} has only N extreme points α1, . . . ,
αN [44]. Then, based on (13), we have the following facts.
(F1) In the noise-free case, by (A1)–(A4), any dimension-

reduced pixel vectors x̃[n] lie in the convex hull of the
dimension-reduced endmember signatures, and

conv {x̃[1], . . . , x̃[L]} = conv{α1, . . . ,αN} (19)

in which conv{α1, . . . ,αN} is a simplex with N extreme
points being α1, . . . ,αN . A more general case of (F1) can
be obtained by relaxing (A1) and (A4), as stated next.

(F2) In the noise-free case, by (A2) and (A3), any dimension-
reduced pixel vectors x̃[n] lie in the affine hull of the
dimension-reduced endmember signatures, and

aff {x̃[1], . . . , x̃[L]} = aff{α1, . . . ,αN} (20)

with the affine dimension equal to N − 1.
A simple illustration of (F1) and (F2), for N = 3 case is

shown in Fig. 1. These geometrical properties of the observed
hyperspectral data play a significant role in the proposed algo-
rithms for estimating the number of endmembers, which will be
presented in the next section.
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Fig. 1. Illustration of (F1) and (F2), for N = 3 case.

III. GEOMETRY-BASED ESTIMATION

OF NUMBER OF ENDMEMBERS

In this section, we make use of the key geometric char-
acteristics of the observed dimension-reduced hyperspectral
data, i.e., (F1) and (F2) to systematically estimate the number
of endmembers present in the hyperspectral data. Thus the
proposed algorithms are aptly named as geometry-based esti-
mation of number of endmembers (GENE) algorithms. In the
first subsection, we propose the GENE-CH algorithm based on
the convex hull geometry (F1), provided that (A4) holds true.
However, for data with (A4) violated, the GENE-AH algorithm
is proposed in the subsequent subsection. GENE-AH is based
on (F2) and it turns out to be more robust than the GENE-CH
algorithm against absence of pure pixels in the data (which will
be confirmed by the simulations in Section V).

A. GENE-CH Algorithm

In this subsection we assume that (A4) holds true. Suppose
that a reliable, successive EEA has found the pixel indices
l1, . . . , lN , lN+1, . . . , lk−1, lk, in which l1, . . . , lN are pure
pixel indices and the rest are not. Here, lk is the current pixel
index estimate and {l1, l2, . . . , lk−1} are the previously found
pixel index estimates, and k ≤ Nmax. Then by (13) and (17), it
can be readily inferred that

x̃[li] = βi + w̃[li], i = 1, . . . , k (21)

where

βi =

{
αi, i = 1, . . . , N,∑N

j=1 sj [li]αj , i = N + 1, . . . , k. (22)

To explain the idea behind GENE-CH, let us first con-
sider the noise-free scenario, i.e., w̃[li] = 0, ∀i = 1, . . . , k,
in (21). Recall from (F1) that the total number of ex-
treme points in conv{x̃[1], . . . , x̃[L]} is N . That is to say,
if x̃[lk] = βk cannot contribute a new extreme point to the
conv{x̃[l1], . . . , x̃[lk−1], x̃[lk]}, i.e.,

conv {x̃[l1], . . . , x̃[lk−1], x̃[lk]} =conv {x̃[l1], . . . , x̃[lk−1]}
= conv{β1, . . . ,βk−1}

or in other words, if βk ∈ conv{β1, . . . ,βk−1}, then it can be
inferred by (22) that all the endmembers are already found,
that is k ≥ N + 1. Therefore, the smallest k such that βk ∈
conv{β1, . . . ,βk−1}, must take the value of N + 1, and thus
N can be estimated as k − 1, provided that the smallest k can
be reliably estimated. However, in a real scenario, since only
noisy x̃[l1], . . . , x̃[lk] are available (rather than β1, . . . ,βk),
in the process of estimating the number of endmembers, the
presence of noise in the x̃[l1], . . . , x̃[lk] must be taken into
account. To this end, we propose a Neyman–Pearson hypoth-
esis [45] testing-based method to determine whether βk ∈
conv{β1, . . . ,βk−1}, or not, based on noisy x̃[l1], . . . , x̃[lk].
The details are as follows.

Let us consider the following constrained least squares
problem:

θ� = arg min
θ�0,1T

k−1
θ=1

∥∥∥x̃[lk]− Âk−1θ
∥∥∥2
2

(23)

where

Âk−1 = [x̃[l1], . . . , x̃[lk−1]] ∈ R
(Nmax−1)×(k−1). (24)

The optimization problem in (23) is convex and can be
solved by using available convex optimization solvers such as
SeDuMi[46] and CVX[47]. We define the fitting error vector
e ∈ R

Nmax−1 as below:

e = x̃[lk]− Âk−1θ
� (25)

=μk +

(
w̃[lk]−

k−1∑
i=1

θ�i w̃[li]

)
, (by (21)) (26)

where

μk = βk −
k−1∑
i=1

θ�i βi. (27)

Then the following can be observed from (26):
• If βk ∈ conv{β1, . . . ,βk−1}, then it implies that βk −∑k−1

i=1 θ
′
iβi = 0, for some θ′ = [θ′1, . . . , θ

′
k−1]

T � 0,
1T
k−1θ

′ = 1. In the noise-free case, and when the endmem-
bers are perfectly identified, θ� = θ′. However, in real sce-
narios the optimal (in least-squares error sense) estimate
θ� is a good approximation to θ′ for higher signal-to-noise
ratio (SNR), which makes μk  0. The approximation
error increases as the SNR decreases. As will be seen in
the simulations in Section V, this approximation holds
reasonably well even for moderately low SNRs. Therefore,
e can be approximated as a zero-mean Gaussian random
vector, i.e., e ∼ N (0, ξ�Σ), where

ξ� = 1 + θ�21 + θ�22 + · · ·+ θ�2k−1 (28)

and Σ is given by (15).
• If βk �∈ conv{β1, . . . ,βk−1}, then e ∼ N (μk, ξ

�Σ) is a
non-zero mean Gaussian random vector.

Now define

r = eT (ξ�Σ)−1e. (29)
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When βk ∈ conv{β1, . . . ,βk−1}, it is easy to see that r can
be approximated as a central Chi-square distributed random
variable, and otherwise r is a non-central Chi-square distributed
random variable [48]. In both cases, the degrees of freedom is
Nmax − 1. Hence, we consider the following two hypotheses:

H0 (βk ∈ conv{β1, . . . ,βk−1}) :
r ∼ fχ2(x,Nmax − 1) (30a)

H1 (βk �∈ conv{β1, . . . ,βk−1}) :

r ∼ fNχ2

(
x,Nmax − 1, ‖μk‖22

)
. (30b)

Here, fχ2(x,Nmax − 1) is the pdf of central Chi-square distri-
bution and is given by [48]

fχ2(x, k) =

{
1

2k/2Γ(k/2)
x(k/2)−1e−x/2, x ≥ 0

0, otherwise
(31)

where Γ(k/2) denotes the Gamma function. However, the non-
central Chi-square pdf fNχ2(x,Nmax − 1, ‖μk‖22) is unknown,
as μk is unknown. Therefore, we use Neyman–Pearson classi-
fier rule for the hypothesis testing problem:

Decide H0 if r < η (32a)

Decide H1 if r > η (32b)

where η can be found by minimizing the P (H0|H1) subject to
P (H1|H0) ≤ PFA, in which PFA is the preassigned acceptable
false alarm rate. Obviously, the optimal value of η should
satisfy [45] ∫ ∞

η

fχ2(x,Nmax − 1)dx = PFA.

Hence, the decision rules in (32) can be equivalently written as

Decide H0 if
∫ ∞

r

fχ2(x,Nmax − 1)dx >PFA (33a)

Decide H1 if
∫ ∞

r

fχ2(x,Nmax − 1)dx <PFA. (33b)

The integral in (33) can be easily computed as follows:∫ ∞

r

fχ2(x,Nmax − 1)dx = 1−
γ
(
r
2 ,

Nmax−1
2

)
Γ
(
Nmax−1

2

) (34)

where γ(x/2, (Nmax − 1)/2) is the lower incomplete Gamma
function [49]. Once the integral is evaluated, one of the hy-
potheses should be true, based on (33). The entire procedure
for GENE-CH is summarized in Table I.

B. GENE-AH Algorithm

Recall that the GENE-CH algorithm is based on the assump-
tion that the pure pixels are present in the data (i.e., (A4) holds
true). However, for practical hyperspectral data the presence of

TABLE I
PSEUDOCODE FOR GENE-CH AND GENE-AH ALGORITHMS

pure pixels cannot be guaranteed. In this case, the dimension-
reduced endmembers estimated by an EEA can be expressed in
general as in (21), where

βi =

N∑
j=1

sj [li]αj , ∀i = 1, . . . , k. (35)

Therefore, GENE-CH may not provide an accurate estimate of
the number of endmembers. A pictorial illustration is given in
Fig. 2, where N = 3 endmembers α1,α2,α3 are not present in
the noise-free hyperspectral data. For this case, the endmember
estimates, denoted by βi, i = 1, . . . , Nmax = 6, obtained by
an EEA are shown in Fig. 2(a) and can be expressed as
[by (21) and (35)]

βi = x̃[li] =

3∑
j=1

sj [li]αj , i = 1, . . . , Nmax = 6 (36)

where l1, . . . , l6 are the pixel indices provided by the EEA
under consideration. Then, as can be inferred from Fig. 2(a),
for the conv{β1, . . . ,β6}, there can be more than 3 extreme
points which in fact is 6 in this case, i.e.,

βk �∈ conv{β1, . . . ,βk−1}, k = 2, 3, 4, 5, 6 (37)

which means that the hypothesis H1 given by (30b) will be
true even for k > N = 3. Hence, using the fact (F1) will ob-
viously result in an overestimation of the number of endmem-
bers for this case. However, from Fig. 2(b), it can be readily
inferred that

βk �∈ aff{β1, . . . ,βk−1}, k = 2, 3

βk ∈ aff{β1, . . . ,βk−1}, k = 4, 5, 6.
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Fig. 2. Illustration of GENE-CH algorithm, when no pure pixel is present in the noise-free hyperspectral data (N = 3 case). (a) The endmember estimates
are denoted by βi, i = 1, . . . , Nmax = 6, but conv{β1, . . . ,β6} �= conv{α1,α2,α3} because the true endmembers α1,α2,α3 are not present in the data
cloud, whereas aff{β1, . . . ,βk} = aff{α1,α2,α3}, k = 3, 4, 5, 6, as shown in (b).

Motivated by the above illustration, we next propose the
GENE-AH algorithm.

The GENE-AH algorithm uses the fact (F2), which
states that in the noise-free case, the affine dimension of
aff{x̃[1], . . . , x̃[L]} is N − 1. This implies that in the noise-
free case, if x̃[lk] = βk cannot contribute an increment to the
affine dimension of aff{x̃[l1], . . . , x̃[lk−1], x̃[lk]}, i.e.,

aff {x̃[l1], . . . , x̃[lk−1], x̃[lk]} = aff {x̃[l1], . . . , x̃[lk−1]}
= aff{β1, . . . ,βk−1}

or in other words, if βk ∈ aff{β1, . . . ,βk−1}, then k ≥ N + 1.
Therefore, the smallest k such that βk ∈ aff{β1, . . . ,βk−1},
must take the value of N + 1, and thus N can be esti-
mated as k − 1. As presented in Section III-A, again we
use Neyman–Pearson hypothesis [45] testing to determine
whether βk ∈ aff{β1, . . . ,βk−1}, or not, based on noisy
x̃[l1], . . . , x̃[lk]. The details are as follows:

As in (23), we consider solving the following constrained
least squares problem:

θ� = arg min
1T
k−1

θ=1

∥∥∥x̃[lk]− Âk−1θ
∥∥∥2
2

(38)

where Âk−1 is defined in (24). Again, since (38) is convex, θ�

can be obtained by available convex optimization solvers [46],
[47]. By defining the fitting error vector e as in (25), we have
the following inferences:

• if βk ∈ aff{β1, . . . ,βk−1}, then it can be approximated
that e ∼ N (0, ξ�Σ);

• if βk �∈ aff{β1, . . . ,βk−1}, then e ∼ N (μk, ξ
�Σ),

where μk, ξ�, and Σ are defined in (27), (28), and (15),
respectively. Defining the random variable r as in (29), a
similar Neyman–Pearson hypothesis testing procedure can be
devised for GENE-AH to estimate the number of endmembers
present in the data. As will be seen from the simulations (see
Section V), the GENE-AH algorithm yields better performance

demonstrating its robustness against the absence of pure pixels
in the data. The procedure for GENE-AH is also given in Table I
and is similar to that of GENE-CH, except that in Step 4, the
optimal θ� is obtained by solving (38).

Simply speaking, the GENE algorithms are based on convex
geometry, which in turn is based on the standard assumptions
(A1)–(A4). Though the validity of assumption (A4) is debated
over the years, the other assumptions (A1) to (A3) are believed
to hold true for hyperspectral data, and are extensively em-
ployed in EEAs and HU algorithms [1]. However, as detailed
in [50], there may be some real situations in which both (A2)
and (A4) could be violated. For such a scenario, the GENE-AH
algorithm presented above can be modified so as to accurately
estimate the number of endmembers. The idea behind the mod-
ified GENE-AH (GENE-AH-MOD) algorithm is based only on
(A3), and is explained next.

For the data with (A2) and (A4) not satisfied, any EEA should
output the dimension reduced endmembers {β1, . . . ,βk}
[given by (35)], which may not be purest pixels, but they
can ensure that {β1, . . . ,βk} ⊂ R

Nmax−1 must be in the
range space of [α1, . . . ,αN ] ∈ R

(Nmax−1)×N . Following the
footsteps of GENE-AH, and assuming that only (A3) holds
true, the aim now is to find the smallest k such that βk ∈
range[β1, . . . ,βk−1], and thus N can be estimated as k − 1.
Based on this idea, we next modify the GENE-AH algorithm
by considering the following lemma.

Lemma 1: Suppose that there exists βk ∈ range[β1, . . . ,
βk−1] and βk �∈ aff{β1, . . . ,βk−1}. Then, it holds true that
range[β1, . . . ,βk−1] = aff{β1, . . . ,βk−1,βk}.

Proof: We first prove that aff{β1, . . . ,βk−1,βk} ⊂
range[β1, . . . ,βk−1]. Let Q=[β1, . . . ,βk−1]∈R

(Nmax−1)×(k−1),
and let βk = Qζ, where ζ ∈ R

k−1 satisfying 1T
k−1ζ �= 1.

Then, any vector q ∈ aff{β1, . . . ,βk−1,βk} can be ex-
pressed as

q =Qν +
(
1− 1T

k−1ν
)
βk = Q

(
ν + ζ − ζ1T

k−1ν
)

(39)
=Q

[(
Ik−1 − ζ1T

k−1

)
ν + ζ

]
, (40)
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where ν ∈ R
k−1. Furthermore, since 1T

k−1ζ �= 1, based on
Proposition 1 in [51], we can easily see that the only non-
zero eigenvalue of ζ1T

k−1 is not equal to unity, implying that
the matrix Ik−1 − ζ1T

k−1 is non-singular. Let μ = (Ik−1 −
ζ1T

k−1)ν + ζ which is an invertible affine transformation from
ν. By (40) the vector q = Qμ belongs to range[β1, . . . ,βk−1],
implying that aff{β1, . . . ,βk−1,βk} ⊂ range[β1, . . . ,βk−1].

Next, we show that range[β1, . . . ,βk−1] ⊂
aff{β1, . . . ,βk−1,βk}. Any vector q ∈ range[β1, . . . ,βk−1]
can be represented by q = Qμ where μ ∈ R

k−1, and such
a μ can always find a one-to-one affine mapping from a
ν ∈ R

k−1; i.e.,

μ =
(
Ik−1 − ζ1T

k−1

)
ν + ζ (41)

for any ζ satisfying 1T
k−1ζ �= 1. Hence, q can be expressed as

q = Qν +
(
1− 1T

k−1ν
)
Qζ. (42)

As βk=Qζ, q belongs to aff{β1, . . . ,βk−1,βk} [given by
(39)], implying that range[β1, . . . ,βk−1] ⊂ aff{β1, . . . ,βk−1,
βk}. Thus, it is proved that the two sets range[β1, . . . ,βk−1]
and aff{β1, . . . ,βk−1,βk} are identical. �

Lemma 1 implies that the smallest k such that βk ∈
range[β1, . . . ,βk−1] is equivalent to finding the smallest t =
k + 1 such that βt ∈ aff{β1, . . . ,βt−1}. Hence, following
the Neyman–Pearson hypothesis testing procedure in GENE-
AH, N can be estimated as k − 1 = t− 2, and for the sake
of differentiation, the algorithm is named as GENE-AH-
MOD. In summary, the estimated number of endmembers
using GENE-AH-MOD corresponds to one less than that of
GENE-AH.

Some conceptual distinctions between the proposed GENE
algorithms and some existing benchmark algorithms are as
follows. Existing algorithms for the estimation of number of
endmembers, such as HySiMe [18] and orthogonal subspace
projection (OSP) [35], are developed based on the projection
power on the most apt range space of the hyperspectral data,
which in turn is based only on (A3) (as the case with GENE-
AH-MOD, discussed above). In other words, those methods
consider the following fact: x̃[li] ∈ range[α1, . . . ,αN ]. How-
ever, GENE-CH and GENE-AH involve convex hull and affine
hull i.e.,

x̃[li] ∈ conv{α1, . . . ,αN} ⊂ aff{α1, . . . ,αN}

⊂ range[α1, . . . ,αN ]

as they not only make use of (A3), but also (A2) for GENE-AH
algorithm, and (A1), (A2), and (A4) for GENE-CH algorithm.
The estimation accuracy of GENE-CH, GENE-AH, and GENE-
AH-MOD algorithms on a given data, depends on the validity
of the assumptions for the given data. In Section V, some
sophisticated simulations will be performed to demonstrate the
performances of GENE-CH, GENE-AH, and GENE-AH-MOD
algorithms, by testing them using simulation data generated
with realistic combinations of these assumptions.

It should be noted that the estimation accuracies of the GENE
algorithms depend on the performance of the EEA used. Hence,

in the next section, we propose a reliable (with theoretical
support for endmember identifiability), reproducible (without
any initialization), and successive EEA, namely p-norm-based
pure pixel identification (TRI-P) algorithm.

IV. p-NORM-BASED PURE PIXEL

IDENTIFICATION (TRI-P)

The proposed TRI-P algorithm aims to find the pure pixel
indices (and thereby the endmembers) from the hyperspectral
observations. Throughout the derivation of the TRI-P algo-
rithm, we focus on a noise-free signal model by means of
which the endmember identifiability of the TRI-P algorithm can
be theoretically proved (noisy scenarios will be considered in
simulations in Section V). We begin by incorporating the as-
sumption (A2) in (13) so that we have the following augmented
dimension-reduced data:

x̄[n] =

[
x̃[n]

1

]
=

N∑
i=1

si[n]ᾱi ∈ R
Nmax (43)

where

ᾱi =
[
αT

i 1
]T

, i = 1, . . . , N (44)

are the augmented dimension-reduced endmembers.
We now find the first dimension-reduced endmember

by p-norm maximization procedure as follows: Consider-
ing the p-norm of all the pixel vectors in the augmented
dimension-reduced data cloud X̄ = [x̄[1], . . . , x̄[L]], by the
triangle inequality, (A1), and (A2), one can infer from (43) that
for all n

‖x̄[n]‖p ≤
N∑
i=1

si[n] · ‖ᾱi‖p ≤ max
i=1,...,N

{
‖ᾱi‖p

}
(45)

where p ≥ 1. The equality in (45) holds if and only if n =
li (by (A4)) for any i ∈ argmaxk=1,...,N{‖ᾱk‖p}. Thus, a
dimension-reduced endmember can be identified by

α1 = x̃[l1] for any l1 ∈ arg max
n=1,...,L

{
‖x̄[n]‖p

}
. (46)

Once the first endmember is found, the other endmembers
α2, . . . ,αN can be obtained successively by the following
general procedure: Suppose that the augmented dimension-
reduced endmembers [given by (44)] ᾱ1, . . . , ᾱk−1 (where
k − 1 < N ) are already identified. Let

Q = [ᾱ1, . . . , ᾱk−1] ∈ R
Nmax×(k−1). (47)

To find a new endmember different from ᾱ1, . . . , ᾱk−1,
we consider the following orthogonal complement subspace
projection:

P⊥
Qx̄[n] =

N∑
i=k

si[n]P
⊥
Qᾱi, ∀n, (by (43)) (48)
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where P⊥
Q = INmax

−Q(QTQ)
−1
QT is the orthogonal com-

plement projector of Q. Again, by the triangle inequality, (A1),
(A2), and (48), we have

∥∥P⊥
Qx̄[n]

∥∥
p
≤

N∑
i=k

si[n] ·
∥∥P⊥

Qᾱi

∥∥
p
≤ max

i=k,...,N

{∥∥P⊥
Qᾱi

∥∥
p

}
.

(49)

The equality in (49) holds if and only if n = lj (by (A4)) for
any j ∈ argmaxi=k,...,N{‖P⊥

Qᾱi‖p}. Therefore, one can find
a new dimension-reduced endmember as

αj= x̃[lj ] for any lj ∈argmaxn=1,...,L

{∥∥P⊥
Qx̄[n]

∥∥
p

}
(50)

and αj = x̃[lj ] �∈ {α1, . . . ,αk−1}.
The above endmember estimation methodology is called the

TRI-P algorithm, and it can identify all the dimension-reduced
endmembers, as stated in the following lemma.

Lemma 2: Under (A1)–(A4), with N known, and in the
absence of noise, TRI-P algorithm yields {α1, . . . ,αN} such
that the simplex conv{α1, . . . ,αN} = conv{x̃[1], . . . , x̃[L]}.

Once the dimension-reduced endmembers are found, the
corresponding endmembers can be obtained by (16).

At this juncture, it is worthwhile to point out some character-
istics of the proposed TRI-P algorithm.

• Lemma 2 is valid only if (A4) is satisfied and the number
of endmembers N is perfectly known. However, if (A4)
is satisfied and N is unknown (which is the case in the
proposed GENE-CH algorithm), then Nmax pixel indices
can be obtained by TRI-P algorithm, where the first N
pixel indices will be a set of pure pixel indices. In this case,
an interesting question is: What will be the pixel index
lk obtained by TRI-P algorithm when k > N? It can be
shown from (13) and (A3) that in the noiseless case x̄[n] ∈
range[ᾱ1, . . . , ᾱN ]. Therefore, under (A1)–(A4), when
finding αk for k > N , we have by (47) that ‖P⊥

Qx̄[n]‖
p
=

0, ∀n. Equation (50) will therefore yield a pixel index lk
for which

x̃[lk] =

N∑
j=1

sj [lk]αj , ∀k > N (51)

can be any pixel in the data cloud.
• On the other hand, if (A4) is not satisfied and N is

perfectly known. Then the set of pixel indices {l1, . . . , lN}
corresponds to a set of so-called “purest pixels” available
in the data cloud.

• Finally, if both (A4) is not satisfied and N is unknown
(which is the case in the proposed GENE-AH algorithm),
then still Nmax pixel indices can be obtained, where the
first N pixel indices will be indices corresponding to a
set of so-called “purest pixels” in the data cloud, whereas
pixel index lk when k > N can be any pixel in the data
cloud, i.e.,

x̃[lk] =
N∑
j=1

sj [lk]αj , ∀N < k ≤ Nmax. (52)

TABLE II
p-NORM-BASED PURE PIXEL (TRI-P) ALGORITHM

The augmented dimension-reduced data [given by (43)]
used in the development of TRI-P algorithm is not only
to account for (A2) but also to ensure that in total Nmax

purest pixel indices can be identified via orthonormal
projection of the Nmax − 1 dimension-reduced data. By
contrast, using the dimension-reduced data [given by (13)]
in TRI-P algorithm will yield only Nmax − 1 purest pixel
indices due to the lack of degrees of freedom to identify
the Nmaxth purest pixel.

• While other existing pure-pixel-based EEAs such as pixel
purity index (PPI) [24], vertex component analysis (VCA)
[25], N-FINDR [27]–[29], and simplex growing algorithm
(SGA) [30] require initializations (though the outcome of
SGA is insensitive to initialization [30]), TRI-P does not
require initialization of any form, and hence the solution
is unique for a given hyperspectral data. Therefore, the
endmember estimates of the TRI-P algorithms are repro-
ducible even in the presence of noise, i.e., they always
yield the same endmember estimates for a given hyper-
spectral data.

• Incidentally, the SVMAX algorithm [31] which is devel-
oped based on Winter’s unmixing criterion, and ATGP
algorithm [34] which is based on target detection, turn out
to be the special cases of the pixel search based TRI-P
algorithm with p = 2. This also shows the interrelation
between the EEAs based on Winter’s unmixing criterion
and the pure pixel search strategy.

Though the notion of orthogonal projections has already been
employed in VCA [25] to avoid repeated identification of a
previously found endmember, the insensitivity to initialization,
theoretical support for endmember identifiability, and superior
performance (as will be demonstrated in Section V) of the
proposed EEA, are some of the special characteristics of the
proposed TRI-P algorithm.

The entire TRI-P algorithm is summarized in Table II.
Though the TRI-P algorithm in Table II alone can yield a set
of pixel indices {l1, . . . , lNmax

}, if used in conjunction with
the GENE algorithms (presented in Table I), the pixel index
l1 needed in Step 2 of Table I is provided by Step 1 of Table II,
while lk needed in Step 3 of Table I for any 1 < k ≤ Nmax is
successively provided by Step 2 of Table II, for each k > 1.
In other words, TRI-P algorithm with the above character-
istics serves as a good candidate for successively providing
the pixel indices to feed the proposed GENE algorithms in a
synchronous fashion.
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V. SIMULATIONS

In this section, various Monte Carlo simulations are per-
formed to analyze the performances of the proposed TRI-P,
GENE-CH, and GENE-AH algorithms.1 In the first subsec-
tion, the effectiveness of the proposed TRI-P (for p = 1, 2,
and ∞) algorithm is studied. Algorithms that are considered
for comparison with TRI-P algorithm are VCA [25], iterative
N-FINDR (I-N-FINDR) [27], successive N-FINDR (SC-N-
FINDR), sequential N-FINDR (SQ-N-FINDR) [28], SGA [30],
and alternating volume maximization (AVMAX) [31]. The
algorithmic details for those EEAs under test are as follows:
Affine set fitting [43] is employed for dimension reduction
in I-N-FINDR, SC-N-FINDR, SQ-N-FINDR, and AVMAX,
while VCA uses either singular value decomposition (SVD)
or PCA based on the signal-to-noise ratio (SNR). To have fair
complexity comparison with other methods, VCA is supplied
with the SNR value (instead of letting the VCA algorithm
estimate the SNR value). The convergence tolerance for I-N-
FINDR, SQ-N-FINDR, and AVMAX is set to 10−6.

In the second subsection, simulations are performed to study
the effectiveness of GENE-CH and GENE-AH algorithms in
various scenarios. Algorithms that are considered for com-
parison are HySiMe [18], HFC, NWHFC [14], ATGP-NPD
[36], and MINMAX-SVD [7]. The GENE algorithms, HFC,
NWHFC, and ATGP-NPD are evaluated for the following false
alarm probability: 10−3, 10−4, 10−5, and 10−6, and for GENE,
NWHFC, and ATGP-NPD algorithms, the true noise covariance
matrix is supplied for each simulated data set.

In both subsections, for all the scenarios under consideration,
100 Monte Carlo runs are performed. The average root-mean-
square (rms) spectral angle [25], [43] between the true and the
estimated endmember signatures is used as the performance
index for evaluating the performances of the EEAs under test.
The root-mean-square (rms) spectral angle φ is defined below
for convenience

φ = min
π∈ΠN

√√√√ 1

N

N∑
i=1

[
arccos

(
aTi âπi

‖ai‖ ‖âπi
‖

)]2
(53)

where âi denotes the estimated endmember signature,
π = [π1, . . . , πN ]T , and ΠN = {π ∈ R

N |πi ∈ {1, 2, . . . , N},
πi �= πj for i �= j} is the set of all the permutations of {1, 2, . . .,
N}. Lower spectral angle φ corresponds to better performance
of the EEA. For performance comparison of the algorithms
under test for estimating the number of endmembers, the mean
and standard deviation of the estimated number of endmembers
are calculated.

In the simulations, the endmembers are chosen from the
USGS library [52]. The endmembers considered in our
simulations are from the following pool: Alunite, Andradite,
Buddingtonite, Chalcedony, Desert Varnish, Goethite,

1We have provided practical implementations of TRI-P and GENE algo-
rithms at http://www.ee.nthu.edu.tw/cychi/source_code_download-e.html. The
source codes were written in MATLAB, and are based on a reliable convex
optimization software CVX[47]. Readers are encouraged to use the codes for
their research purpose.

Halloysite, Kaolinite, Montmorillonite, Muscovite, Nontronite,
Pyrope, Ammonium Smectite, Calcite, Dicktite, Dumortierite,
Hematite, Jarosite, Opal, and Paragonite, with M = 224.
The abundance vectors s[n], n = 1, . . . , L are generated by
following the Dirichlet distribution [25], [43], which ensures
that the assumptions (A1) and (A2) hold true for the simulated
hyperspectral data. In addition to the number of endmembers
N , and the number of pixels L, there are two other parameters
that define a particular scenario: purity level ρ of the data
set and SNR. A data set with purity level ρ implies the
purity factor 1/

√
N ≤ ρn = ‖s[n]‖2 ≤ ρ [43] for each of its

abundance vectors s[n]. The value of ρn defines the quantitative
dominance of an endmember ai in the observed pixel vector
x[n] =

∑N
i=1 si[n]ai, ∀n. The SNR of a data set with noise

variance σ2 is defined as

SNR =
1

MLσ2

L∑
n=1

‖x[n]‖22 . (54)

A. Evaluation of TRI-P Algorithm in Uniform Gaussian
Noise Scenario

Here, the first eight endmembers are considered (N = 8)
from the aforementioned pool and additive white Gaussian
noise is added to the noise-free data and the noisy observations
are generated as per (1). The noise in each band is assumed to
be independent and identically distributed Gaussian with zero
mean and variance σ2. The EEAs are tested for different purity
levels and for different SNRs. The average rms spectral angles
φ for the EEAs under test for SNRs ranging from 10 to 40 dB,
and for the noise-free case (SNR = ∞), with ρ = 0.8, 0.9, 1,
and L = 1000 pixels are shown in Table III. Though the EEAs
are designed for ρ = 1, we consider cases with different purity
levels so as to study the performances of the algorithms when
the pure pixel assumption is violated. The bold-faced numbers
in Table III correspond to the minimum average rms spectral
angle for a specific pair of (ρ,SNR), over all the algorithms
under test. It can be observed from Table III that for ρ = 1, and
0.9, TRI-P (p = 2) wins in almost all situations, for ρ = 0.8
(highly mixed case), TRI-P (p = 1) performs well in many
cases. The average computation time Tc (over all the scenarios
under consideration) of each algorithm implemented in Matlab
R2008a and running in a desktop computer equipped with Core
i7-930 CPU with speed 2.80 GHz, and 12 GB memory, is also
shown Table III. It can be observed from Table III that, the
TRI-P algorithm, besides better performance, also offers the
highest computational efficiency.

B. Evaluation of GENE-CH and GENE-AH Algorithms

The GENE-CH, GENE-AH, and GENE-AH-MOD (in Sce-
nario 6 below) algorithms introduced in Section III are tested
on the simulated hyperspectral data. Since, out of all the EEAs
considered in Section V-A, TRI-P (with p = 2) offered the best
performance, the pixel indices required for GENE algorithms
(see Table I) are obtained from the TRI-P (with p = 2) algo-
rithm. There are totally six scenarios under consideration.
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TABLE III
AVERAGE φ (DEGREES) AND AVERAGE COMPUTATION TIME Tc (SECS) OVER THE VARIOUS EEAS FOR

DIFFERENT PURITY LEVELS (ρ) AND SNRS (UNIFORM GAUSSIAN NOISE CASE), L = 1000, N = 8

TABLE IV
MEAN ± STANDARD DEVIATION OF THE ESTIMATED NUMBER OF ENDMEMBERS FOR GENE ALGORITHMS OVER 100 INDEPENDENT RUNS,

WITH DIFFERENT FALSE ALARM PROBABILITIES PFA—UNIFORM GAUSSIAN NOISE CASE SNR = 20 dB AND 40 dB,
FOR Nmax = 10, 20, 30, AND 50. TRUE N = 8, L = 5000, M = 224, AND ρ = 1

Scenario 1: In the first scenario, the effect of the chosen
Nmax value on the estimation accuracy of the GENE algorithms
is investigated. The endmembers used are the same as used in
the previous subsection and the data generation parameters are
N = 8, M = 224, L = 5000, and ρ = 1. The Nmax is varied
as 10, 20, 30, and 50. Uniform Gaussian noise is added to the
data and the SNR values considered are 20 dB (low SNR) and
40 dB (high SNR). The obtained mean ± standard deviation
of the estimated number of endmembers over 100 independent
runs are shown in Table IV. It can be seen from Table IV that
for both SNRs the estimation accuracy of the GENE algorithms
is considerably robust to the Nmax values, and the closer the
Nmax value is to the true N , the better will be the estimation
accuracy.

Scenario 2: The endmembers used and the data generation
parameters are the same as in Scenario 1, and Nmax = 25. As

in Section V-A, uniform Gaussian noise was added to produce
noisy hyperspectral data for SNR values of 15, 25, 35 and
45 dB. The mean and the standard deviation of the estimated
number of endmembers over 100 independent runs, for the
algorithms under test are shown in Table V (left half). From
Table V, it can be readily observed that for this scenario, the
estimation accuracies of the proposed algorithms (GENE-CH
in particular) are the best for low SNR (15 dB), and for other
SNRs, GENE-CH and GENE-AH with PFA = 10−6 perform
well and so does HySiMe. It should be noted that for SNR ≥
25 dB, as the PFA decreases, the standard deviations almost
reduce to zero. The performances of the other algorithms under
test are below par, and that of HFC (for SNR ≥ 25 dB) and
NWHFC (for all SNRs) are independent of SNR.

Scenario 3: In this scenario, we study the performances
of the algorithms under test for the case when the data are
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TABLE V
MEAN ± STANDARD DEVIATION OF THE ESTIMATED NUMBER OF ENDMEMBERS FOR VARIOUS ALGORITHMS OVER 100 INDEPENDENT RUNS,

WITH DIFFERENT FALSE ALARM PROBABILITIES PFA (WHENEVER APPLICABLE) AND SNRS—UNIFORM AND NON-UNIFORM

GAUSSIAN NOISE CASE. Nmax = 25, TRUE N = 8, L = 5000, M = 224, AND ρ = 1

corrupted by non-uniform Gaussian noise, while maintaining
the other parameters used in the previous scenario. The noise in
each band is considered to be uncorrelated, but with different
variances in each band. The noise variances σ2

i in each of the
M spectral bands follow a Gaussian shape that is centered at the
(M/2)th band. The noise variances σ2

i in each band are given
by [25], [43]

σ2
i =σ2 exp(−(i−M/2)2/2τ2)∑M

j=1 exp(−(j−M/2)2/2τ2)
, ∀i=1, . . . ,M (55)

where σ2 is defined in (54), exp(·) represents exponential
function, and τ controls the variance of the Gaussian shape
among σ2

1 , . . . , σ
2
M . It corresponds to uniform Gaussian noise

for τ = ∞, and one-band noise for τ = 0. The τ value in
the simulations is set to 36 and the purity level ρ is fixed
to be 1. Values of mean ± standard deviation of the number
of endmembers estimated by the algorithms under test are
also shown in Table V (right half). Here, again, for low SNR
(15 dB), the proposed GENE algorithms perform well. For
other SNRs, GENE-AH with PFA = 10−6 and HySiMe yield
the best performance. It is worthwhile to mention that contrary
to the GENE algorithms, the performance of HySiMe algorithm
is almost independent of the noise types (uniform or non-
uniform Gaussian noise).

Scenario 4: The purity level ρ of the generated hyperspectral
data is allowed to vary while maintaining N = 8. The data are
corrupted by uniform Gaussian noise with SNR = 30 dB. For
the case with N = 8, M = 224, L = 5000, and Nmax = 25,
values of mean ± standard deviation of the number of end-
members estimated by the algorithms under test are tabulated
in Table VI (left half). It can be readily seen from Table VI

that when purity level is smaller, GENE-CH overestimates the
number of endmembers which is consistent with the discussions
in Section III-B and the illustration in Fig. 2. On the other hand,
GENE-AH with PFA = 10−6 and HySiMe correctly estimates
the number of endmembers.

Scenario 5: In the data generation, the number of endmem-
ber N is allowed to vary as 8, 12, 16 and 20, while maintaining
ρ = 1, M = 224, and L = 5000. Here, again, the data is cor-
rupted by uniform Gaussian noise with SNR = 30 dB. Values
of mean ± standard deviation of the number of endmembers
estimated by the algorithms under test, are also tabulated in
Table VI (right half). It can be observed from Table VI that for
higher number of endmember N = 16, 20 GENE-CH yields
the best performance followed by GENE-AH. For N = 8,
12 both GENE-AH, GENE-CH, and HySiMe yield the best
performance.

Scenario 6: The final scenario is to study the performance
of the GENE-AH-MOD and other algorithms on data with
(A2) and (A4) violated. The synthetic data are generated by
Dirichlet distribution except that the sum of the abundances are
not constrained to unity. The parameters are set to N = 8, M =
224, L = 5000, ρ = 0.8 and Nmax = 25. Uniform Gaussian
noise was added and the SNR values considered are 15, 25,
35 and 45 dB. The mean ± standard deviation of the number of
endmembers estimated by the algorithms under test, over 100
independent runs, are shown in Table VII. From Table VII, it
can be readily seen that for lower SNR (15 dB) GENE-AH-
MOD and GENE-AH offer the best estimate of N , and for
other SNRs both GENE-AH-MOD and HySiMe yield the best
estimates of N . Whenever there is uncertainty in a data re-
garding the validity of assumptions (A2) and (A4), GENE-AH-
MOD could be used to estimate the number of endmembers,
irrespective of the SNR.
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TABLE VI
MEAN ± STANDARD DEVIATION OF THE ESTIMATED NUMBER OF ENDMEMBERS FOR VARIOUS ALGORITHMS OVER 100 INDEPENDENT RUNS,

WITH DIFFERENT FALSE ALARM PROBABILITIES PFA (WHENEVER APPLICABLE), FOR VARIOUS PURITY LEVELS AND NUMBER OF

ENDMEMBERS. UNIFORM GAUSSIAN NOISE CASE, SNR = 30 dB, Nmax = 25, L = 5000, AND M = 224

TABLE VII
MEAN ± STANDARD DEVIATION OF THE ESTIMATED NUMBER OF ENDMEMBERS FOR VARIOUS ALGORITHMS OVER 100 INDEPENDENT RUNS,

WITH DIFFERENT FALSE ALARM PROBABILITIES PFA (WHENEVER APPLICABLE) AND SNRS—UNIFORM GAUSSIAN NOISE CASE,
FOR DATA WITH (A2) AND (A4) VIOLATED. Nmax = 25, TRUE N = 8, L = 5000, M = 224, AND ρ = 0.8

In summary, it can be inferred that as long as Nmax > N , the
estimation of the number of endmembers do not suffer much. It
can also be concluded from the above simulation results that the
GENE-CH algorithm is more suitable for data with pure pixels

(i.e., for data with (A4) satisfied) and larger number of endmem-
bers. While the GENE-AH is the better choice when (A4)
is violated, GENE-AH-MOD serves as the preferred choice
(irrespective of the SNR) when both (A2) and (A4) are violated.
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TABLE VIII
NUMBER OF ENDMEMBERS ESTIMATED BY VARIOUS ALGORITHMS,

WHERE NA DENOTES “NON-APPLICABLE” AND � DENOTES

“OUT OF MEMORY” ENCOUNTERED IN MATLAB

VI. REAL DATA EXPERIMENTS

In this section, the proposed GENE-CH and GENE-AH
algorithms using TRI-P (p = 2), and some other algorithms for
estimating the number of endmembers, are tested with AVIRIS
real hyperspectral data obtained over the Cuprite Nevada site
[53]. The AVIRIS data are well studied in the recent years [25],
[43] and the availability of a structured library of endmember
signature [52], [54] aids in identification of the mineral maps.
The static nature of the Cuprite Nevada site over the recent
years, together with the availability of a standard library of
minerals makes the data appropriate for conducting real data
experiments, so as to validate the algorithms under test. The
algorithms under test are GENE-CH, GENE-AH, GENE-AH-
MOD, HySiMe, HFC, NWHFC, ATGP-NPD, and MINMAX-
SVD. The hyperspectral data over the Cuprite Nevada contains
224 bands with better SNRs in most of the bands [55]. Among
the 224 bands, bands 1–2, 104–113, 148–167, and 221–224
were removed due to strong noise or dense water-vapor content
in those bands. In our experiment, we considered a 200 ×
200 sub-image (region of interest) of the hyperspectral
data, with 188 bands (after removing the bands with poor
information).

The estimated number of endmembers obtained by the algo-
rithms under test are given in Table VIII. For the GENE algo-
rithms Nmax is set to 100 and for all the algorithms PFA is set
to 10−8, wherever applicable, in order to get a reliable estimate.
The noise covariance matrix for this real data is estimated by
multiple regression analysis [18] and is supplied for GENE,
NWHFC, and ATGP-NPD algorithms. As can be seen from
Table VIII, the estimated numbers of endmembers are different
for each algorithm. For the Cuprite data set, initially it was
concluded that there are about 13 minerals (endmembers) in the
site, and later it was increased to nearly 70 mineral compounds
(endmembers) [55]. Hence, it is difficult to comment on the
estimation accuracies of the algorithms under test. Assuming
(A2) to be true for this data set, the good estimation accuracy
of GENE-AH algorithm (as inferred from Tables V and VI),
makes 27 (see Table VIII), a reasonable estimate for this data
set. On the other hand, GENE-CH overestimates the number
of endmembers. This may be attributed to the fact that in the
absence of pure pixels, GENE-CH indeed overestimates the
number of endmembers (cf. Table VI).

To show the applicability of TRI-P (p = 2) algorithm in real
data, a quantitative measurement of the endmembers estimated

TABLE IX
MEAN-REMOVED SPECTRAL ANGLES φ̄ (DEGREES) BETWEEN LIBRARY

SPECTRA AND ENDMEMBERS ESTIMATED BY TRI-P (p = 2)

by TRI-P (p = 2) algorithm for the considered real data with
N = 27, namely the mean removed spectral angle between the
estimated signature aest and the corresponding library signature
alib is considered. The mean removed spectral angle is defined
in [43] and [56] as

φ̄ = arccos

(
(aest −m(aest))

T (alib −m(alib))

‖aest −m(aest)‖ · ‖alib −m(alib)‖

)
(56)

where m(a) = (1T
Ma)1M (1/M) for any vector a ∈ R

M . The
value of φ̄ for the various minerals identified by the TRI-P
(p = 2), is given in Table IX, and the numbers in the parenthe-
ses correspond to the values of φ̄ for repeatedly identified ma-
terials. The abundance maps corresponding to the endmembers
estimated by TRI-P (p = 2) are obtained by fully constrained
least squares (FCLS) algorithm [57] and are shown in Fig. 3.
Note that the minerals in Table IX and Fig. 3 are arranged
in alphabetical order and the minerals were identified by the
visual comparison of the obtained abundance maps with the
ones available in [43], [54], [56], [58], and [59].

VII. CONCLUSION

In this paper, we have considered the estimation of number
of endmembers in hyperspectral images, which has been a
challenging problem prevailing in the field of hyperspectral
image analysis. To this end, we have presented two convex
geometry-based algorithms, namely GENE-CH and GENE-AH
algorithms, based on the fact that the observed dimension-
reduced observations lie in the convex hull and affine hull of
the endmember signatures, respectively. For data in which (A2)
does not hold true, the GENE-AH algorithm is modified as
GENE-AH-MOD, which relies only on (A3). The GENE algo-
rithms employ a Neyman–Pearson hypothesis testing strategy
to estimate the true number of endmembers. Any successive
EEA can be employed in conjunction with the GENE algo-
rithms, therefore the performances of the GENE algorithms
depend on the successive EEA employed, implying that a
reliable, reproducible and computationally efficient EEA is
desirable. Furthermore, we have presented the successive TRI-P
algorithm (with its endmember identifiability proven) which
serves as a good EEA for the proposed GENE algorithms.
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Fig. 3. Abundance maps estimated based on endmembers obtained by TRI-P (with p = 2).

Simulation results confirm the superior efficacy of TRI-P
(p = 2) and TRI-P (p = 1), for purer (e.g. ρ = 1, 0.9) and more
mixed (e.g. ρ = 0.8) hyperspectral data, respectively. It is also
shown via simulations that to estimate the number of end-
members, GENE-CH is preferred when pure pixels are present
and the number of endmembers is large. For data without
pure pixels, GENE-AH should be the advisable choice. If both
(A2) and (A4) are violated in a given data, irrespective of the
SNR, GENE-AH-MOD is the preferred choice for estimating
the number of endmembers. Simulations also reveal that the
HySiMe algorithm which is independent of assumptions (A2)
and (A4) and does not require any tuning parameter, has perfor-
mance comparable to that of the proposed GENE algorithms,
in many of the scenarios. The real hyperspectral data experi-

ment also exhibits the practical applicability of the proposed
GENE-AH algorithm and TRI-P algorithm.

Though real data are obtained with high SNRs, the presence
of outliers in the data could affect the estimation of number
of endmembers. Algorithms for estimation of number of end-
members, which are robust against the presence of outliers
and against model mismatch errors (which may occur when
multiple reflections are recorded by the hyperspectral sensor),
will be our future research.
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